Evaluation in the Face of Uncertainty: Anticipating Surprise and Responding to the Inevitable

AEA/CDC Summer Evaluation Institute June 13 – 16, 2010 Atlanta GA

Jonathan A. Morell, Ph.D. jamorell@jamorell.com (734) 646-8622

© 2010 Guilford Publications

What is this workshop about?

Response to surprise

 Crisis response → advance planning

Disseminating knowledge

 Tactics for adding surprise to the evaluation mix

Community building

- More and better tactics
- More and better theory
- Archive of cases

Adding "surprise" to evaluation planning

- Funding
- Deadlines
- Logic models
- Measurement
- Program theory
- Research design
- Information use plans
- Defining role of evaluator
- Logistics of implementation
- Planning to anticipate and respond to surprise

In this workshop we will go heavy on tricks and tips, light on theory, explanation, or analysis of collected cases.

The goal is informed commitment to practical action

- When is the likelihood of surprise high?
- When will surprise disrupt evaluation?
- If probability of disruption is high, what can we do about it?

- Many choices, one actual design
- All have pros and cons
- Tradeoffs are inescapable

Some historical background

We know why unexpected events occur

Evaluation

- Goal free evaluation emphasizes what a program does, not what it claims
- Interactivity between evaluation and the program being evaluated

Explanations embedded in domain

 Marketing, education, drinking regulation, tobacco control, product development, welfare, and many others, I have no doubt.

Complex systems

 Uncertain environments, cross linkages, self organization, adaptation, feedback loops with different latencies, etc.

But what to do about it as evaluators?

Guaranteed solution

- Post-test only
- Experimental group only
- Unstructured data collection

But we want to do a lot better

You can never tell the future but some surprises are more foreseeable than others

Foreseeable1111111111111111111111111111		Unforeseeable
 Get lucky Knowledge from stakeholders Good program theory Use research literature Use experts 		 Complex system behavior makes prediction impossible no matter how clever we are. PS – do not assume that complex systems are always unpredictable!
Limiting time frames	5	
Exploiting past experie	nce	
_	Forecasting & program monitoring	
_	Forecasting & program monitoring System based logic modeling	
_	Forecasting & program monitoring System based logic modeling Re	etooling program theory
	Forecasting & program monitoring System based logic modeling Re	etooling program theory Agile methodology

Jonny's favorite metaphor

We don't know exactly where the cats are but we can sweep them toward one side of the landscape, and tame the one's that escape.

Programs and their evaluations have an essential similarity

- What will help us with unexpected program outcomes will also
- Help us with unexpected problems in conducting an evaluation because
- Both are similar social constructions
 - Resources (time, people, \$)
 - Processes
 - Embedded in a social setting
 - To accomplish specific objectives

What are the practical and political reasons for surprise?

- Any single organization has limited money, political capital, human capital, authority and power
- Narrow windows of opportunity
- Competition requires bold claims
- Resource owners have parochial interests
- Design expertise limited
- Collaboration across agency boundaries is very difficult
- Short term success is rewarded
- Partial solutions can accrue to major success over time
- Pursuing limited success with limited resources is justifiable.

<u>Result</u>

- Narrow programs
- Simple program theories
- Small set of outcomes

Planners may know better but they are doing the best job they can. Evaluators have to follow.

What might an unforeseen but predictable outcome look like?

Program	Innovation	Results
Post-natal care in NigerFormal fees	 NGO provides drugs and supplies 	Patients: drug hoarding (patients learned from previous programs)
 Informal fees integrated into (hiddon in) overall fee 		
into (hidden in) overall fee structure	 Remove fees 	Staff: game system, new fees

- Experience with similar programs
- Psychology of self interest
- Common sense

Something like this will happen, even if we can't say exactly what.

What might unforeseeable outcomes look like?

The problem is not sensitive to scale. We run into the same trouble with large and small problems.

How much surprise should we expect?

- Where is the program in its life cycle? Start-up phase is unstable.
- How stable is the environment? The past not be a good guide, but maybe better than nothing
- How robust has the innovation been over time and context?
- How rich and tight are the linkages?
- What is the "size" of the program relative to the boundaries of the system it is in?

	S	Size
inkages	High	Low
High	 Whole school reform Continuity of care 	
Low		 New reading curriculum Pre-surgical checklist

Why is this advice problematic

- What does "big" mean with respect to a system and an innovation?
- What pattern of linkages qualify as "rich"?
- What feedback latency constitutes "tight"?
- What does "fast" mean with respect to a life cycle?
- Rich linkages might indicate both stability and fragility
- Small changes can have disproportionally large effects

But it still helps to ask the questions

How do we estimate the likelihood of surprise?

- Fidelity and robustness
 - Fidelity = extent program adheres to proven protocols
 - Robustness = program works when fidelity is low and context variation is high
 - Low fidelity + low robustness = high likelihood of surprise
- Time erodes predictability
 - Shifting environments
 - Longer feedback loops
 - Changing internal operations
 - New customer and stakeholder needs

R&D content

- Proven knowledge in novel setting, e.g. cross functional continuous process improvement in a poisonous labor/management climate
- Novel program, e.g. injecting "consumer operator services" into a traditional mental health setting
- Novel phenomenon, e.g. integrating Web 2.0 into routine organizational operations

But when uncertainty is high AND uncertainty is problematic for evaluation?

- Life cycle view
- Social/organizational view

Program x evaluation life cycles can help us understand when uncertainty is high and problematic

Evaluation life cycle

- Shorter or longer than program life cycle
- Begins sometime after program start (usually)
- Stages affect each other iteratively
- More spiral than waterfall form, but with some lag, all stages are present

Program life cycle

- Formal events, e.g. budgets, yearly plans, publishing RFPs
- Continual stream of micro-level changes and environmental adaptations with greater effects early on

Relationships between the life cycles affect unpleasant surprise

Multiple, short term studies

- Continuous process improvement
- Short time between cause and effect = inference with simpler methodology
- Pretesting and prototyping to test evaluation design
- Inherently sensitive to unexpected program activity

1:1 Correspondence between life cycles

- Fog of start up
- Surprise late in program life cycle can force early stage evaluation redesign
- Gets worse when design and data requirements must be stable over time

Retrospective focus

- Emphasis on program in stable part of life cycle
- Program change, evolution relatively unimportant

	Stage where surprise discovered			
Stage where corrective action most useful	Design	Implementation	Data Collection	Data Analysis
Design	Case 2			Case 1
Implementation				
Data Collection				
Data Analysis			© 20	10 Guilford Publications
 Case 2: Computer training Early discovery of disagree multiple stakeholders' pride Design reworked many time valuation implementatio Design was able to satisfy 	eement over orities mes prior to n y all needs		1: Child Care Sponsor's priority: rat children Minimum ratio set by Upper limit set by ecc Restricted range → no findings Design problem discor stage Evaluation question m	io of caregivers to regulation phomics p significant vered at analysis

We can also learn a lot by comparing evaluation stage where a problem is discovered to the stage where it is best fixed.

Where does surprise fall on the program x evaluation life cycles? 32 surprises from 18 cases

* Morell, J.A (2000) Internal evaluation: A synthesis of traditional methods and industrial engineering . Am. J. of Evaluation

Where does surprise come from? A Social/organizational view is also helpful in understanding surprise

Where does surprise come from and how does it move through the system? 32 surprises from 18 cases

Some other useful ways of categorizing sources of surprise

- Pilot tests / feasibility assessments: Important but not infallible, e.g.
 - Last year's data used to estimate power do not apply to current year
 - Query individuals who can answer for themselves but not for the organizational behavior
- Resistance to evaluation
 - People think they can speak for a program when they can't
 - Levels are not static over time
- Incorrect assumptions early in the evaluation life cycle
 - Funders ask the wrong question
 - People think they can promise data but can't deliver

These methods are most useful early in evaluation life cycle

- Get lucky
- Knowledge from stakeholders
- Good program theory
- Use research literature
- Use experts

Theory

Limiting time frames

Exploiting past experience

 Complex system behavior makes prediction impossible no matter how clever we are.
 PS – do not assume that complex systems are always unpredictable!

Theory as a tactic for reducing surprise

- Why is theory useful?
 - Example 1: Program theory*
 - Example 2: Life cycle behavior
 - Example 3: Perfect Market
- Why is theory problematic? Too

Explanatory power helps look in the right place.

Too many to choose from

 How can value be maximized and Choose more than one, choose wisely. problems minimized?

* For much more on program theory and logic models see workshop slides: Logic Models: Uses, Limitations, Links to Methodology and Data American Evaluation Association Annual Meeting – Orlando FL November 10th, 2009. Downloadable from www.jamorell.com

Program Theory

- Context specific
- Engages stakeholders
- Good framework for surfacing assumptions
- Captures knowledge of deep program experts
- Assures evaluation that will meet what stakeholders perceive as their needs

- Stakeholders cherished beliefs can be wrong
 - Limited to stakeholders' perspectives
 - Not likely to capture much relevant knowledge
 - Similar programs in other contexts
 - Research literature

Theory examples: Life cycles

Ex #1 Worker participation safety program

Union member to evaluator: "These things last 5 years. They always do."

Theory example: Perfect market in health service choice

Recognizing that measurement and public reporting are powerful mechanisms to drive quality and efficiency improvement throughout the health care system, purchasers and consumers have embraced a vision of a transparent health care market, in which decision-making is supported by publicly reported comparative information. Our shared vision is that with this information, Americans will be better able to select hospitals, physicians, and treatments based on nationally standardized measures for clinical quality, consumer experience, equity, and efficiency. http://www.healthcaredisclosure.org/about/

Choosing Theories

Principles

- One is better than none
- A few are better than one
- Include stakeholders' program theory
- Using more than a few is dysfunctional too many variables and relationships
- Choices establish path dependency. Make sure all theories in pool are relevant

Thought Experiment

- 1. Stakeholders establish program theory
- 2. Recruit group of diverse experts
- 3. Experts choose 5 other *relevant* theories
- 4. Pick 1/5 at random

Result: Similarity across designs

- Same program
- Same stakeholders
- Same environment
- Same information needs

- 5. Add to stakeholder program theory
- 6. Develop evaluation
- 7. Pick another theory
- 8. Repeat

Result: All designs better than if only 1 used

- Stakeholders provide context specificity
- Other theories provide relevant
 - Variables
 - Relationships

Capitalizing on what we already know

Few programs are so unique that previous experience won't decrease surprise

- Process knowledge: What happens to programs like mine in similar circumstances?
 - E.g. How do needle exchange and health eating programs fare at election time?
- What do we know about how programs like mine work?
 - E.g. Do threatening public service announcements encourage diabetics to monitor their blood sugar and control what they eat?
 - Literature reviews and interviews work

Example of using process knowledge to understand program behavior	Use of pre-surgical checklists Dissemination of evidence based practice data	Certainty of outcomes High Low	Political Sensitivity Low High
Example of using domain knowledge	Tobacco control: Integra environmental focus Problem: Not enough ki implementation in this o	ate person focu nown about su context	us and ccessful
•	Solution: 1) Literature r ecological implementati evaluation of application	eview of succe ons. 2) Theory n for tobacco c	ssful based ontrol

Choosing knowledge domains: Principles are the same as with theory

- One is better than none
- A few are better than one
- Include stakeholders' program expertise
- Using more than a few is dysfunctional too many variables and relationships
- Choices establish path dependency. Make sure all candidates are relevant

We can minimize surprise by limiting temporal and causal distance, but we better be careful. A lot can happen as time marches on.

These methods are most useful for detecting leading indicators

Unforeseeable

Complex system behavior

matter how clever we are. PS – do not assume that complex

systems are always unpredictable!

makes prediction impossible no

- Get lucky
- Knowledge from stakeholders •
- Good program theory
- Use research literature
- Use experts

Forecasting & program monitoring

System based logic modeling

The trick is to do a little better than the Delphic oracle

Use planning and monitoring techniques to revisit program *and* evaluation at various slices of their life cycles

- Assumptions underlying program success
 - Which are critical?
 - How robust or brittle?
 - Indicators of failure?
- Future states
 - What is the desired future?
 - What are the likely futures?
- Environmental conditions
 - Funding / Politics / Culture
 - Needs of service population, whether individuals of organizations
- Internal operations
 - Staff makeup, organizational structure/culture

How to get all this information?

- Stakeholders are necessary but not sufficient
- Identify all relevant domains
- Identify most relevant subset
- Query relevant subset frequently
- Rotate thorough the others
- Use case study methods

Example of how a program may change over time

The program: Improve safety by training managers

- Some program assumptions
 - Workers can interpret managers' behavior
 - Safety → productivity
 - Safety + productivity → manager behavior
 - No linkage with other CPI initiatives
 - No activity to sabotage program
- Some evaluation assumptions
 - Need only manager, worker surveys + safety, productivity data
 - No confounds to causal inference

Agile Evaluation

Data

Can the data be modified to meet new needs?	 e.g. Validated scales vs. open ended questions Custom programming vs. standard lookup Structured teacher observations during class vs. casual assessment by visitors
Is gatekeeper approval needed?	 e.g. OMB Air Force Survey Office Corporate VP
Are substitutes available without harming the intent of the evaluation?	 e.g. Self report → clinical record Direct cost → total cost
Are substitutes practical?	 Collection burden increase Development cost to move to new methods Switching time relative to deadline for getting data E.g. Clinical records vs. patient report

Agile methodology: Some definitions

Agile	Ability to change quickly.		
Methodology	Logic in which observations are embedded		
Evaluation	 Organizational entity Processes Resources Structures Constructed to allow Data acquisition to feed Methodology that allows data interpretation 		
How to make an evaluation agile	 Flexible vs. rigid design elements Dependencies Boundaries Partition Retool program theory 		
	34		

©

Example of agile and brittle evaluation components

Methodology

- Two possible comparison groups
- Time series and cross sectional possibilities
- If any one comparison goes away others remain

Experimental Control Time Series

Data

- Develop, validate fixed-choice instruments for pre-post training assessments
- Interviews ½ way through training for course improvement

Data

- Interviews with workers soon after an accident to see why/if manager behavior affects safety
- Safety, accident, derailment statistics from IT systems to test primary outcome

What are the agile and brittle components?

Data: Formative	Data: Summative	Design	Implications for Agility
Validated instrument test training quality		2, beginning, end of training	 Time, cost: difficult to change instrument Timing to training critical
Semi-structured questions: if/why managers change		1 half way through for course improvement.	Minimal effort to determine questions.Variation around midpoint OK.
	Validated safety culture scales	3, start, end, 6 months post	 Time, \$, difficult to change instrument. First 2 timed to training. 3rd can move
	Interviews: why manager behavior affects safety	Keyed to occurrence of accidents.	 Minimal time to determine questions. Synchronize with accidents
	Safety & accident stats	From company IT system	Available any timeNot linked to training
		1- Control groups other parts of company	 Difficult to implement. Considerable negotiation needed.
		2- Time series on accidents	 Available from IT systems. Fallback if #1 disappears

Number and Richness of Dependencies Affect Agility

•	Which design serves	Task Name	Mar 28, '10	Apr 4, '10	Apr 11, '10	Apr 18, '10	Apr 25, '10	May 2, '10	May 9
	the customer best?	Interviews as raw							
•	Which design is	material for survey							
	riskier?	development							
	Which should be	Survey developed							
	chosen?	from interviews							
		Baseline data				♦ 4/18			
		assessment							
		Conduct program				H			
	- -	Posttest data					* -4	/29	
D	esign I	Analysis						*	
•	Same program	Final report							♦ 5/8
	Somewhat different								
•	evaluation questions								
	Different in length of								
	critical nath	Interviews to provide			I				
		contextual							
D	esian 2	understanding	_						
_	g =	Evaluation context			—				
		report							
					_				
		Determine how to get	t						
		data from II system							
		Pagalina data	-			4/17			
		Daseline data							
			-						
		Conduct program	-					/20	
		Positest data	_				▼ "		
		Analysis	-						5/9
		Final report							● 5/6

Example 1: Evaluations that depend on managing boundaries are not agile

Example #1 Negotiating for access to data			
Organizational distance	Data collection burden	Data sensitivity	Agility
Different leaders	Interviews	Labor / management interactions	Low. Renegotiating any evaluation condition is difficult.
Same leader	IT data	Technical capacity	

There are many good reasons to choose one or another design. Agility can be <u>one of them</u>.

Example 2: Evaluations that depend on managing boundaries are not agile

Example #2 Control Groups		
	Agility	
Design based on random assignment	Low. Even small breakdown can have large impact on analysis	
Design based on naturally occurring groups		

There are many good reasons to choose one or another design. Agility can be <u>one</u> of them.

One reason for partition in an evaluation design is agility

We always split our projects into phases in the service of practicality, methodology, and promoting knowledge use. E.g. pretests of instruments, pilot studies to estimate power, preliminary findings to test stakeholder needs, feasibility assessments

Agility can be another reason to think about partition			
	Original	Innovation for Agility	Advantages and Disadvantages
Process example	Interview 1/2 way in training. Feedback on instruction	Interview some ¹ / ₄ , ¹ / ₂ and ³ / ₄ through	 More opportunity to see if program is working to plan. Chance to change outcome measures Logistics more difficult Opportunity for as much information as possible at 1/2 point is lost
Outcome example	Download IT data at end	Analyze at intervals	 Chance to see detect unexpected outcomes More evaluation resources for analysis Greater burden on company's IT staff

Selecting tactics: Sometimes more is not better

Foreseeable44		Unforeseeable	
 Get lucky Knowledge from stakeholders Good program theory Use research literature Use experts 		 Complex system behavior makes prediction impossible no matter how clever we are. PS – do not assume that complex systems are always unpredictable! 	
Theory			
Limiting time frames	s Any few o	f these may make sense	
Exploiting past experie	nce	r these may make sense.	
Forecasting & program monitoring System based logic modeling			
		Retooling program theory	
		Agile methodology	
But all together they can get us into a lot of trouble.		Data choices	
© 2010 Jonathan Morell			

Example of how multiple tactics induce new problems: Buffering against promised interviews not materializing

Evaluation Scenario	Advantages	Disadvantages
 Treatment 6 month follow-up, phone interviews by clinic staff 12 month, as above Administrator assures cooperation 	Detailed information	Resistance to work not seen as serving clinical purpose
Eliminate 1 data collection	Might get needed information	Less dataStill no guarantee of cooperation
Eliminate interviews, rely on IT information instead	No clinical cooperation needed	Sparse dataIT data often untrustworthyA lot of work to vet systems
Do both	 Redundancy Increased range of information Multiple measures 	 Longer to design and implement Need more diverse expertise on evaluation team Hard to maintain integrity of evaluation over time Nurture good relationships with clinical <u>and</u> IT staff Resources diverted, e.g. from analysis

Framework for appreciating trade-offs

How can we design maximum protection against surprise before problems set in?

- General good practice to engineer as much communication as possible along the evaluation life cycle
 - New or evolving needs
 - Evaluation findings
 - Insight on analysis
 - Redesign logic models
- Also sets a context where minimal extra effort or complication needed to discuss unintended or unexpected program or evaluation behavior

- Split essential and non-essential members
- Essential: stakeholders whose continued involvement is needed to
 - maintain the evaluation
 - make use of findings
- Non-essential: weak claims on the program but advice can be useful.
 - Not on the critical path
 - Relatively low cost
 - Very many possible groups but
 - Some are better than none
 - Membership can rotate over time

Diverse input means larger groups. Larger groups are hard to manage

- Use special techniques to get small group behavior from large groups
- Delphi methods to avoid discord
- Loose groups, e.g. <u>advisory</u> boards meet just frequently enough to know the project and who can provide occasional useful advice
- It's frequency, not just cost. Phone and Web conferencing lowers cost and increases amount of advice that can be purchased
- Split groups by recognize relative connectedness, e.g. sustainability and impact are related, but different enough to keep advisors separate.

- Evaluation plans differ in the number of critical paths among their components Make this *one* of the considerations. E.g.
 - 6 month follow-up data to design 12 month follow-up, or
 - Design instruments based on cross sectional analysis of past service recipients at 6 and 12 months
- Richness of dependencies. E.g.
 - Continual iteration: 1) Simulation to determine program performance + 2) empirical data collection *or*
 - Simulation after data collection